Electric-field-assisted formation of an interfacial double-donor molecule in silicon nano-transistors

نویسندگان

  • Arup Samanta
  • Daniel Moraru
  • Takeshi Mizuno
  • Michiharu Tabe
چکیده

Control of coupling of dopant atoms in silicon nanostructures is a fundamental challenge for dopant-based applications. However, it is difficult to find systems of only a few dopants that can be directly addressed and, therefore, experimental demonstration has not yet been obtained. In this work, we identify pairs of donor atoms in the nano-channel of a silicon field-effect transistor and demonstrate merging of the donor-induced potential wells at the interface by applying vertical electric field. This system can be described as an interfacial double-donor molecule. Single-electron tunneling current is used to probe the modification of the potential well. When merging occurs at the interface, the gate capacitance of the potential well suddenly increases, leading to an abrupt shift of the tunneling current peak to lower gate voltages. This is due to the decrease of the system's charging energy, as confirmed by Coulomb blockade simulations. These results represent the first experimental observation of electric-field-assisted formation of an interfacial double-donor molecule, opening a pathway for designing functional devices using multiple coupled dopant atoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field

In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbi...

متن کامل

Design and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors

In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is ...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Nano Organic Transistor with SiO2 / Poly VinylPyrrolidone Dielectric

In this paper, the morphology, roughness and nano structural properties of SiO2/Poly Vinyl Pyrrolidone  synthesized with sol gel method,  characterized by using scanning electron microscopy, atomic force microscopy and GPS132A techniques.The main material taken from oxide silicon with weight percentage of 20, 40, 60, 80 and from poly vinyl pyrrolidone with percentages of 80, 60, 40, 20 is synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015